1. How many different arrangements can be made using all of the letters in the word IOWA?
[A] 12
[B] 24
[C] 104
[D] 6
2. How many different arrangements can be made using all of the letters in the word MATH?
[A] 36
[B] 24
[C] 12
[D] 104
3. How many different arrangements can be made using all of the letters in the word MOVIE?
[A] 25
[B] 120
[C] 10
[D] 5
4. How many different arrangements can be made using all of the letters in the word GRAPHICS?
[A] 28
[B] 40,320
[C] 208
[D] 8
5. How many different arrangements can be made using all of the letters in the word ZEBRA?
[A] 5
[B] 10
[C] 120
[D] 130
6. How many different arrangements can be made using all of the letters in the word ORANGE?
[A] 36
[B] 30
[C] 720
[D] 225
7. How many different arrangements can be made using all of the letters in the word TOPIC?
[A] 130
[B] 120
[C] 5
[D] 10
8. How many different arrangements can be made using all of the letters in the word CRAYON?
[A] 720
[B] 225
[C] 36
[D] 30
9. How many different arrangements can be made using all of the letters in the word GAME?
[A] 24
[B] 36
[C] 12
[D] 16
10. How many different arrangements can be made using all of the letters in the word POWER?
[A] 120
[B] 25
[C] 5
[D] 10
11. Find: ${ }_{10} P_{2}$
[A] 12
[B] 90
[C] 20
[D] 180
12. Find: ${ }_{4} P_{2}$
[A] 6
[B] 24
[C] 8
[D] 12
13. Find: ${ }_{8} P_{5}$
[A] 13,440
[B] 6720
[C] 13
[D] 40
14. Find: ${ }_{5} P_{4}$
[A] 240
[B] 120
[C] 9
[D] 20
15. Find: ${ }_{9} P_{5}$
[A] 14
[B] 30,240
[C] 15,120
[D] 45
16. Find: ${ }_{6} P_{3}$
[A] 18
[B] 120
[C] 9
[D] 240
17. Find: ${ }_{7} P_{4}$
[A] 11
[B] 1680
[C] 840
[D] 28
18. If no two letters are repeated, and if the letters do not have to form a word, how many different 3-letter combinations can be made from the letters $\mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}$?
19. If no two letters are repeated, and if the letters do not have to form a word, how many different 6-letter combinations can be made from the letters $\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}$?
20. If no two letters are repeated, and if the letters do not have to form a word, how many different 3-letter combinations can be made from the letters $\mathrm{i}, \mathrm{j}, \mathrm{k}$?
21. If no two letters are repeated, and if the letters do not have to form a word, how many different 3-letter combinations can be made from the letters e, $\mathrm{f}, \mathrm{g}, \mathrm{h}$?
22. If no two letters are repeated, and if the letters do not have to form a word, how many different 4-letter combinations can be made from the letters $\mathrm{h}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}$?
23. If no two letters are repeated, and if the letters do not have to form a word, how many different 4-letter combinations can be made from the letters $\mathrm{o}, \mathrm{p}, \mathrm{q}, \mathrm{r}$?
24. If no two letters are repeated, and if the letters do not have to form a word, how many different 3-letter combinations can be made from the letters d, e, f ?
25. If no two letters are repeated, and if the letters do not have to form a word, how many different 4-letter combinations can be made from the letters $\mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{p}, \mathrm{q}$?
26. If no two letters are repeated, and if the letters do not have to form a word, how many different 4 -letter combinations can be made from the letters $\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$?
27. If no two letters are repeated, and if the letters do not have to form a word, how many different 3-letter combinations can be made from the letters $\mathrm{p}, \mathrm{q}, \mathrm{r}$?
28. How many different ways can 8 different runners finish in first, second, and third places in a race?
29. How many different ways can 9 different runners finish in first, second, and third places in a race?
30. How many different ways can 11 different runners finish in first, second, and third places in a race?
31. How many different ways can 15 different runners finish in first, second, and third places in a race?
32. How many different ways can 13 different runners finish in first, second, and third places in a race?
33. How many different ways can 14 different runners finish in first, second, and third places in a race?
34. How many different ways can 12 different runners finish in first, second, and third places in a race?
35. How many different ways can 10 different runners finish in first, second, and third places in a race?
36. How many different ways can 7 different runners finish in first, second, and third places in a race?
37. A circular, rotating, serving tray has 5 different desserts placed around its circumference. How many different ways can all of the desserts be arranged on the circular tray?
[A] 120
[B] 24
[C] 720
[D] 20
38. A circular, rotating, serving tray has 6 different desserts placed around its circumference. How many different ways can all of the desserts be arranged on the circular tray?
[A] 40,320
[B] 5040
[C] 120
[D] 720
39. A circular, rotating, serving tray has 4 different desserts placed around its circumference. How many different ways can all of the desserts be arranged on the circular tray?
[A] 24
[B] 120
[C] 6
[D] 12
40. A circular, rotating, serving tray has 8 different desserts placed around its circumference. How many different ways can all of the desserts be arranged on the circular tray?
[A] 3,628,800
[B] 40,320
[C] 362,880
[D] 5040
41. A circular, rotating, serving tray has 7 different desserts placed around its circumference. How many different ways can all of the desserts be arranged on the circular tray?
[A] 5040
[B] 42
[C] 720
[D] 40,320
42. A circular, rotating, serving tray has 5 different desserts placed around its circumference. How many different ways can all of the desserts be arranged on the circular tray?
[A] 720
[B] 24
[C] 5040
[D] 120
43. A circular, rotating, serving tray has 6 different desserts placed around its circumference. How many different ways can all of the desserts be arranged on the circular tray?
[A] 5040
[B] 120
[C] 30
[D] 720
44. A circular, rotating, serving tray has 4 different desserts placed around its circumference. How many different ways can all of the desserts be arranged on the circular tray?
[A] 24
[B] 720
[C] 120
[D] 6
45. A circular, rotating, serving tray has 8 different desserts placed around its circumference. How many different ways can all of the desserts be arranged on the circular tray?
[A] 362,880
[B] 56
[C] 5040
[D] 40,320
46. A circular, rotating, serving tray has 7 different desserts placed around its circumference. How many different ways can all of the desserts be arranged on the circular tray?
[A] 5040
[B] 362,880
[C] 40,320
[D] 720
47. Evaluate: ${ }_{8} C_{2}$
[A] 40,320
[B] 16
[C] 4
[D] 28
48. Evaluate: ${ }_{9} C_{4}$
[A] 4
[B] 72
[C] 126
[D] 3024
49. Evaluate: ${ }_{9} C_{3}$
[A] 362,880
[B] 84
[C] 27
[D] 9
50. Evaluate: ${ }_{6} C_{2}$
[A] 15
[B] 3
[C] 720
[D] 30
51. Evaluate: ${ }_{8} C_{5}$
[A] 40
[B] 56
[C] 4
[D] 80
52. Evaluate: ${ }_{8} C_{3}$
[A] 9
[B] 336
[C] 40,320
[D] 56
53. Evaluate: ${ }_{10} C_{4}$
[A] 40
[B] 210
[C] 3
[D] 80
54. Evaluate: ${ }_{7} C_{3}$
[A] $4 \quad[B] 210$
[C] 35
[D] 42
55. Evaluate: ${ }_{7} C_{2}$
[A] 28
[B] 21
[C] 14
[D] 4
56. Evaluate: ${ }_{10} C_{5}$
[A] 30,240
[B] 4
[C] 252
[D] 3,628,800
57. Six cards are drawn in succession and without replacement from a standard deck of 52 cards. How many sets of six cards are possible?
[A] 20,358,520
[B] 14,658,134,400
[C] 2,908,360
[D] 122,151,120
58. Five cards are drawn in succession and without replacement from a standard deck of 52 cards. How many sets of five cards are possible?
[A] 311,875,200
[B] 433,160
[C] 12,994,800
[D] 2,598,960
59. Three cards are drawn in succession and without replacement from a standard deck of 52 cards. How many sets of three cards are possible?
[A] 66,300
[B] 22,100
[C] 132,600
[D] 5525
60. Two cards are drawn in succession and without replacement from a standard deck of 52 cards. How many sets of two cards are possible?
[A] 296
[B] 2386
[C] 1326
[D] 786
61. Seven cards are drawn in succession and without replacement from a standard deck of 52 cards. How many sets of seven cards are possible?
[A] 16,723,070
[B] 936,491,920
[C] 133,784,560
[D] 674,274,182,400
62. Four cards are drawn in succession and without replacement from a standard deck of 52 cards. How many sets of four cards are possible?
[A] 1,082,900
[B] 6,497,400
[C] 54,145
[D] 270,725
63. Erika, Jack, Barry, Laura, Jane, and Martha are in the math club. The club advisor will assign students to 5-person teams at the next Math Team competition. How many different 5-person teams can be formed from these six students?
64. Ernest, Rachel, Elena, and Neil are in the math club. The club advisor will assign students to 3-person teams at the next Math Team competition. How many different 3-person teams can be formed from these four students?
65. Billy, Alicia, Sam, and Julio are in the math club. The club advisor will assign students to 2-person teams at the next Math Team competition. How many different 2-person teams can be formed from these four students?
66. Maria, Ralph, Hiro, Jim, and Mario are in the math club. The club advisor will assign students to 2-person teams at the next Math Team competition. How many different 2-person teams can be formed from these five students?
67. Cindy, Rachel, Ralph, Jim, Elena, and Jane are in the math club. The club advisor will assign students to 4-person teams at the next Math Team competition. How many different 4-person teams can be formed from these six students?
68. Billy, Leila, Neil, Ernest, and Martha are in the math club. The club advisor will assign students to 4-person teams at the next Math Team competition. How many different 4-person teams can be formed from these five students?
69. Jack, Barry, Lupe, Hiro, Alicia, and Julio are in the math club. The club advisor will assign students to 2-person teams at the next Math Team competition. How many different 2-person teams can be formed from these six students?
70. Sam, Bob, Erika, Maria, Mario, and Elena are in the math club. The club advisor will assign students to 3-person teams at the next Math Team competition. How many different 3 -person teams can be formed from these six students?
71. Billy, Neil, Jane, Martha, and Cindy are in the math club. The club advisor will assign students to 3-person teams at the next Math Team competition. How many different 3-person teams can be formed from these five students?
72. Evaluate: $\frac{{ }_{12} C_{4} \times{ }_{16} C_{10}}{{ }_{15} C_{11}}$
73. Evaluate: $\frac{{ }_{5} C_{3} \times{ }_{18} C_{4}}{{ }_{8} C_{7}}$
74. Evaluate: $\frac{{ }_{6} C_{5} \times{ }_{9} C_{4}}{{ }_{12} C_{11}}$
75. Evaluate: $\frac{{ }_{12} C_{9} \times{ }_{17} C_{11}}{{ }_{5} C_{2}}$
76. Evaluate: $\frac{{ }_{9} C_{5} \times{ }_{17} C_{7}}{{ }_{18} C_{10}}$
77. How many distinct committees of 11 people can be formed if the people are drawn from a pool of 16 people? Use factorials to express the answer.
[A] ${ }_{16} C_{11}=\frac{16!}{4!11!}$
[B] ${ }_{16} C_{12}=\frac{16!}{4!12!}$
$[\mathrm{C}]{ }_{16} C_{11}=\frac{16!}{5!11!}$
[D] ${ }_{16} C_{10}=\frac{16!}{5!10!}$
78. How many distinct committees of 13 people can be formed if the people are drawn from a pool of 23 people? Use factorials to express the answer.
[A] ${ }_{23} C_{13}=\frac{23!}{9!13!}$
[B] ${ }_{23} C_{14}=\frac{23!}{9!14!}$
$[\mathrm{C}]{ }_{23} C_{12}=\frac{23!}{10!12!}$
$[\mathrm{D}]{ }_{23} C_{13}=\frac{23!}{10!13!}$
79. How many distinct committees of 6 people can be formed if the people are drawn from a pool of 14 people? Use factorials to express the answer.
[A] ${ }_{14} C_{6}=\frac{14!}{8!6!}$
[B] ${ }_{14} C_{5}=\frac{14!}{8!5!}$
$[\mathrm{C}]{ }_{14} C_{7}=\frac{14!}{7!7!}$
$[\mathrm{D}]{ }_{14} C_{6}=\frac{14!}{7!6!}$
80. How many distinct committees of 8 people can be formed if the people are drawn from a pool of 11 people? Use factorials to express the answer.
$[\mathrm{A}]{ }_{11} C_{9}=\frac{11!}{2!9!}$
[B] ${ }_{11} C_{8}=\frac{11!}{3!8!}$
$[\mathrm{C}]{ }_{11} C_{8}=\frac{11!}{2!8!}$
[D] ${ }_{11} C_{7}=\frac{11!}{3!7!}$
81. How many distinct committees of 9 people can be formed if the people are drawn from a pool of 18 people? Use factorials to express the answer.
$[\mathrm{A}]{ }_{18} C_{8}=\frac{18!}{9!8!}$
[B] ${ }_{18} C_{10}=\frac{18!}{8!10!}$
$[\mathrm{C}]{ }_{18} C_{9}=\frac{18!}{8!9!}$
[D] ${ }_{18} C_{9}=\frac{18!}{9!9!}$
82. How many distinct committees of 16 people can be formed if the people are drawn from a pool of 20 people? Use factorials to express the answer.
[A] ${ }_{20} C_{16}=\frac{20!}{4!16!}$
[B] ${ }_{20} C_{16}=\frac{20!}{3!16!}$
$[\mathrm{C}]{ }_{20} C_{15}=\frac{20!}{4!15!}$
[D] ${ }_{20} C_{17}=\frac{20!}{3!17!}$
83. How many distinct committees of 5 people can be formed if the people are drawn from a pool of 17 people? Use factorials to express the answer.
[A] ${ }_{17} C_{4}=\frac{17!}{12!4!}$
$[\mathrm{B}]{ }_{17} C_{5}=\frac{17!}{12!5!}$
$[C]{ }_{17} C_{6}=\frac{17!}{11!6!}$
[D] ${ }_{17} C_{5}=\frac{17!}{11!5!}$
84. How many distinct committees of 5 people can be formed if the people are drawn from a pool of 12 people? Use factorials to express the answer.
[A] ${ }_{12} C_{6}=\frac{12!}{6!6!}$
$[\mathrm{B}]{ }_{12} C_{4}=\frac{12!}{7!4!}$
$[\mathrm{C}]{ }_{12} C_{5}=\frac{12!}{6!5!}$
[D] ${ }_{12} C_{5}=\frac{12!}{7!5!}$
85. How many distinct committees of 23 people can be formed if the people are drawn from a pool of 29 people? Use factorials to express the answer.
[A] ${ }_{29} C_{23}=\frac{29!}{5!23!}$
[B] ${ }_{29} C_{24}=\frac{29!}{5!24!}$
[C] ${ }_{29} C_{23}=\frac{29!}{6!23!}$
[D] ${ }_{29} C_{22}=\frac{29!}{6!22!}$
86. How many distinct committees of 20 people can be formed if the people are drawn from a pool of 28 people? Use factorials to express the answer.
[A] ${ }_{28} C_{21}=\frac{28!}{7!21!}$
[B] ${ }_{28} C_{20}=\frac{28!}{7!20!}$
[C] ${ }_{28} C_{20}=\frac{28!}{8!20!}$
[D] ${ }_{28} C_{19}=\frac{28!}{8!19!}$
87. A hat contains 27 names, 13 of which are male. If five names are randomly drawn from the hat, what is the probability that at least two male names are drawn?
[A] 0.140
[B] 0.186
[C] 0.860
[D] 0.814
