1.	1. How many different arrangements can be made using all of the letters in the word IC				ers in the word IOV	VA?
	[A] 12	[B] 24	[C]	104	[D] 6	
2.	How many diffe	rent arrangements	can be made usin	ng all of the lett	ers in the word MA	TH?
	[A] 36	[B] 24	[C]	12	[D] 104	
3.	How many diffe	rent arrangements	can be made usi	ng all of the lett	ers in the word MC	VIE?
	[A] 25	[B] 120	[C]	10	[D] 5	
4.	How many diffe GRAPHICS?	rent arrangements	can be made usi	ng all of the lett	ers in the word	
	[A] 28	[B] 40,320	[C]	208	[D] 8	
5.	How many diffe	rent arrangements	can be made usi	ng all of the lett	ers in the word ZEI	BRA?
	[A] 5	[B] 10	[C]	120	[D] 130	
6.	How many diffe ORANGE?	rent arrangements	can be made usin	ng all of the lett	ers in the word	
	[A] 36	[B] 30	[C]	720	[D] 225	
7.	How many diffe	rent arrangements	can be made usi	ng all of the lett	ers in the word TO	PIC?
	[A] 130	[B] 120	[C]	5	[D] 10	
8.	How many diffe CRAYON?	rent arrangements	can be made usin	ng all of the lett	ers in the word	
	[A] 720	[B] 225	[C]	36	[D] 30	
9.	How many diffe	rent arrangements	can be made usi	ng all of the lett	ers in the word GA	ME?
	[A] 24	[B] 36	[C]	12	[D] 16	
10.	How many diffe	rent arrangements	can be made usin	ng all of the lett	ers in the word PO	WER?
	[A] 120	[B] 25	[C]	5	[D] 10	
11.	Find: ${}_{10}P_2$	[A] 12	[B] 90	[C] 20	[D] 180	
12.	Find: $_{4}P_{2}$	[A] 6	[B] 24	[C] 8	[D] 12	

13.	Find: ${}_{8}P_{5}$	[A] 13,440	[B] 6720	[C] 13	[D] 40
14.	Find: ${}_{5}P_{4}$	[A] 240	[B] 120	[C] 9	[D] 20
15.	Find: $_{9}P_{5}$	[A] 14	[B] 30,240	[C] 15,120	[D] 45
16.	Find: ${}_{6}P_{3}$	[A] 18	[B] 120	[C] 9	[D] 240
17.	Find: $_7 P_4$	[A] 11	[B] 1680	[C] 840	[D] 28

18. If no two letters are repeated, and if the letters do not have to form a word, how many different 3-letter combinations can be made from the letters s, t, u, v, w?

19. If no two letters are repeated, and if the letters do not have to form a word, how many different 6-letter combinations can be made from the letters c, d, e, f, g, h?

20. If no two letters are repeated, and if the letters do not have to form a word, how many different 3-letter combinations can be made from the letters i, j, k?

- 21. If no two letters are repeated, and if the letters do not have to form a word, how many different 3-letter combinations can be made from the letters e, f, g, h?
- 22. If no two letters are repeated, and if the letters do not have to form a word, how many different 4-letter combinations can be made from the letters h, i, j, k, l, m?
- 23. If no two letters are repeated, and if the letters do not have to form a word, how many different 4-letter combinations can be made from the letters o, p, q, r?
- 24. If no two letters are repeated, and if the letters do not have to form a word, how many different 3-letter combinations can be made from the letters d, e, f?
- 25. If no two letters are repeated, and if the letters do not have to form a word, how many different 4-letter combinations can be made from the letters m, n, o, p, q?
- 26. If no two letters are repeated, and if the letters do not have to form a word, how many different 4-letter combinations can be made from the letters b, c, d, e?

- 27. If no two letters are repeated, and if the letters do not have to form a word, how many different 3-letter combinations can be made from the letters p, q, r?
- 28. How many different ways can 8 different runners finish in first, second, and third places in a race?
- 29. How many different ways can 9 different runners finish in first, second, and third places in a race?
- 30. How many different ways can 11 different runners finish in first, second, and third places in a race?
- 31. How many different ways can 15 different runners finish in first, second, and third places in a race?
- 32. How many different ways can 13 different runners finish in first, second, and third places in a race?
- 33. How many different ways can 14 different runners finish in first, second, and third places in a race?
- 34. How many different ways can 12 different runners finish in first, second, and third places in a race?
- 35. How many different ways can 10 different runners finish in first, second, and third places in a race?
- 36. How many different ways can 7 different runners finish in first, second, and third places in a race?
- 37. A circular, rotating, serving tray has 5 different desserts placed around its circumference. How many different ways can all of the desserts be arranged on the circular tray?

[A] 120 [B] 24 [C] 720 [D] 20

38.	A circular, rotating, serving tray has 6 different desserts placed around its circumference How many different ways can all of the desserts be arranged on the circular tray?				ice.	
	[A] 40,320	[B] 5040	[C] 12	0	[D] 720	
39.	A circular, rotating, How many different	serving tray has 4 t ways can all of t	4 different desser he desserts be arr	ts placed arour anged on the	und its circumferen circular tray?	ice.
	[A] 24	[B] 120	[C] 6		[D] 12	
40.	A circular, rotating, How many different	serving tray has & t ways can all of t	8 different desser he desserts be arr	ts placed arour anged on the	und its circumferen circular tray?	ice.
	[A] 3,628,800	[B] 40,320	[C] 36	2,880	[D] 5040	
41.	A circular, rotating, How many different	serving tray has a tways can all of t	7 different desser he desserts be arr	ts placed arour anged on the	und its circumferen circular tray?	ice.
	[A] 5040	[B] 42	[C] 72	0	[D] 40,320	
42.	A circular, rotating, How many different	serving tray has f t ways can all of t	5 different desser he desserts be arr	ts placed arour anged on the	und its circumferen circular tray?	ice.
	[A] 720	[B] 24	[C] 50	40	[D] 120	
43.	3. A circular, rotating, serving tray has 6 different desserts placed around its circumfere How many different ways can all of the desserts be arranged on the circular tray?				ice.	
	[A] 5040	[B] 120	[C] 30		[D] 720	
44.	A circular, rotating, How many different	serving tray has 4 t ways can all of t	4 different desser he desserts be arr	ts placed arour anged on the	und its circumferen circular tray?	ice.
	[A] 24	[B] 720	[C] 12	0	[D] 6	
45.	A circular, rotating, How many different	serving tray has 8 t ways can all of t	B different desser he desserts be arr	ts placed arour anged on the	und its circumferen circular tray?	ice.
	[A] 362,880	[B] 56	[C] 50	40	[D] 40,320	
46.	A circular, rotating, How many different	serving tray has a t ways can all of t	7 different desser he desserts be arr	ts placed arour anged on the	und its circumferen circular tray?	ice.
	[A] 5040	[B] 362,880	[C] 40	,320	[D] 720	
47.	Evaluate: ${}_{8}C_{2}$	[A] 40,320	[B] 16	[C] 4	[D] 28	

48.	Evaluate: ${}_{9}C_{4}$	[A] 4	[B] 72	[C] 126	[D] 3024
49.	Evaluate: ${}_{9}C_{3}$	[A] 362,880	[B] 84	[C] 27	[D] 9
50.	Evaluate: ${}_{6}C_{2}$	[A] 15	[B] 3	[C] 720	[D] 30
51.	Evaluate: ${}_{8}C_{5}$	[A] 40	[B] 56	[C] 4	[D] 80
52.	Evaluate: ${}_{8}C_{3}$	[A] 9	[B] 336	[C] 40,320	[D] 56
53.	Evaluate: $_{10}C_4$	[A] 40	[B] 210	[C] 3	[D] 80
54.	Evaluate: $_7C_3$	[A] 4	[B] 210	[C] 35	[D] 42
55.	Evaluate: $_7C_2$	[A] 28	[B] 21	[C] 14	[D] 4
56.	Evaluate: $_{10}C_5$	[A] 30,240	[B] 4	[C] 252	[D] 3,628,800
57.	Six cards are drawr 52 cards. How man	n in succession and by sets of six cards	l without replacem are possible?	nent from a star	ndard deck of
	[A] 20,358,520	[B] 14,658,134,4	400 [C] 2,908	3,360 [D]	122,151,120
58.	Five cards are draw 52 cards. How man	n in succession an y sets of five cards	d without replaces s are possible?	ment from a sta	undard deck of
	[A] 311,875,200	[B] 433,160	[C] 12,9	94,800	[D] 2,598,960
59.	Three cards are dra 52 cards. How man	wn in succession a y sets of three card	and without replac ds are possible?	ement from a s	tandard deck of
	[A] 66,300	[B] 22,100	[C] 132,	,600	[D] 5525
60.	Two cards are draw 52 cards. How man	n in succession an y sets of two cards	nd without replaces s are possible?	ment from a sta	andard deck of
	[A] 296	[B] 2386	[C] 1320	6	[D] 786
61.	Seven cards are dra 52 cards. How man	wn in succession a y sets of seven car	and without replac ds are possible?	ement from a s	standard deck of
	[A] 16,723,070	[B] 936,491,9	920 [C] 133,	,784,560	[D] 674,274,182,400

62. Four cards are drawn in succession and without replacement from a standard deck of 52 cards. How many sets of four cards are possible?

[A] 1,082,900 [B] 6,497,400 [C] 54,145 [D] 270,725

- 63. Erika, Jack, Barry, Laura, Jane, and Martha are in the math club. The club advisor will assign students to 5-person teams at the next Math Team competition. How many different 5-person teams can be formed from these six students?
- 64. Ernest, Rachel, Elena, and Neil are in the math club. The club advisor will assign students to 3-person teams at the next Math Team competition. How many different 3-person teams can be formed from these four students?
- 65. Billy, Alicia, Sam, and Julio are in the math club. The club advisor will assign students to 2-person teams at the next Math Team competition. How many different 2-person teams can be formed from these four students?
- 66. Maria, Ralph, Hiro, Jim, and Mario are in the math club. The club advisor will assign students to 2-person teams at the next Math Team competition. How many different 2-person teams can be formed from these five students?
- 67. Cindy, Rachel, Ralph, Jim, Elena, and Jane are in the math club. The club advisor will assign students to 4-person teams at the next Math Team competition. How many different 4-person teams can be formed from these six students?
- 68. Billy, Leila, Neil, Ernest, and Martha are in the math club. The club advisor will assign students to 4-person teams at the next Math Team competition. How many different 4-person teams can be formed from these five students?
- 69. Jack, Barry, Lupe, Hiro, Alicia, and Julio are in the math club. The club advisor will assign students to 2-person teams at the next Math Team competition. How many different 2-person teams can be formed from these six students?
- 70. Sam, Bob, Erika, Maria, Mario, and Elena are in the math club. The club advisor will assign students to 3-person teams at the next Math Team competition. How many different 3-person teams can be formed from these six students?

71. Billy, Neil, Jane, Martha, and Cindy are in the math club. The club advisor will assign students to 3-person teams at the next Math Team competition. How many different 3-person teams can be formed from these five students?

72. Evaluate:
$$\frac{{}_{12}C_4 \times {}_{16}C_{10}}{{}_{15}C_{11}}$$

73. Evaluate:
$$\frac{{}_{5}C_{3} \times_{18}C_{4}}{{}_{8}C_{7}}$$

74. Evaluate:
$$\frac{{}_{6}C_{5} \times_{9}C_{4}}{{}_{12}C_{11}}$$

75. Evaluate:
$$\frac{{}_{12}C_9 \times_{17}C_{11}}{{}_{5}C_2}$$

- 76. Evaluate: $\frac{{}_{9}C_{5} \times_{17}C_{7}}{{}_{18}C_{10}}$
- 77. How many distinct committees of 11 people can be formed if the people are drawn from a pool of 16 people? Use factorials to express the answer.

[A]
$$_{16}C_{11} = \frac{16!}{4! \, 11!}$$
 [B] $_{16}C_{12} = \frac{16!}{4! \, 12!}$ [C] $_{16}C_{11} = \frac{16!}{5! \, 11!}$ [D] $_{16}C_{10} = \frac{16!}{5! \, 10!}$

78. How many distinct committees of 13 people can be formed if the people are drawn from a pool of 23 people? Use factorials to express the answer.

[A]
$$_{23}C_{13} = \frac{23!}{9! \, 13!}$$
 [B] $_{23}C_{14} = \frac{23!}{9! \, 14!}$ [C] $_{23}C_{12} = \frac{23!}{10! \, 12!}$ [D] $_{23}C_{13} = \frac{23!}{10! \, 13!}$

79. How many distinct committees of 6 people can be formed if the people are drawn from a pool of 14 people? Use factorials to express the answer.

[A]
$$_{14}C_6 = \frac{14!}{8! \, 6!}$$
 [B] $_{14}C_5 = \frac{14!}{8! \, 5!}$ [C] $_{14}C_7 = \frac{14!}{7! \, 7!}$ [D] $_{14}C_6 = \frac{14!}{7! \, 6!}$

80. How many distinct committees of 8 people can be formed if the people are drawn from a pool of 11 people? Use factorials to express the answer.

[A]
$$_{11}C_9 = \frac{11!}{2!9!}$$
 [B] $_{11}C_8 = \frac{11!}{3!8!}$ [C] $_{11}C_8 = \frac{11!}{2!8!}$ [D] $_{11}C_7 = \frac{11!}{3!7!}$

81. How many distinct committees of 9 people can be formed if the people are drawn from a pool of 18 people? Use factorials to express the answer.

[A]
$$_{18}C_8 = \frac{18!}{9!\,8!}$$
 [B] $_{18}C_{10} = \frac{18!}{8!\,10!}$ [C] $_{18}C_9 = \frac{18!}{8!\,9!}$ [D] $_{18}C_9 = \frac{18!}{9!\,9!}$

82. How many distinct committees of 16 people can be formed if the people are drawn from a pool of 20 people? Use factorials to express the answer.

[A]
$$_{20}C_{16} = \frac{20!}{4! \ 16!}$$
 [B] $_{20}C_{16} = \frac{20!}{3! \ 16!}$ [C] $_{20}C_{15} = \frac{20!}{4! \ 15!}$ [D] $_{20}C_{17} = \frac{20!}{3! \ 17!}$

83. How many distinct committees of 5 people can be formed if the people are drawn from a pool of 17 people? Use factorials to express the answer.

[A]
$$_{17}C_4 = \frac{17!}{12! 4!}$$
 [B] $_{17}C_5 = \frac{17!}{12! 5!}$ [C] $_{17}C_6 = \frac{17!}{11! 6!}$ [D] $_{17}C_5 = \frac{17!}{11! 5!}$

84. How many distinct committees of 5 people can be formed if the people are drawn from a pool of 12 people? Use factorials to express the answer.

[A]
$$_{12}C_6 = \frac{12!}{6! \, 6!}$$
 [B] $_{12}C_4 = \frac{12!}{7! \, 4!}$ [C] $_{12}C_5 = \frac{12!}{6! \, 5!}$ [D] $_{12}C_5 = \frac{12!}{7! \, 5!}$

85. How many distinct committees of 23 people can be formed if the people are drawn from a pool of 29 people? Use factorials to express the answer.

[A]
$$_{29}C_{23} = \frac{29!}{5! \, 23!}$$
 [B] $_{29}C_{24} = \frac{29!}{5! \, 24!}$ [C] $_{29}C_{23} = \frac{29!}{6! \, 23!}$ [D] $_{29}C_{22} = \frac{29!}{6! \, 22!}$

86. How many distinct committees of 20 people can be formed if the people are drawn from a pool of 28 people? Use factorials to express the answer.

[A]
$$_{28}C_{21} = \frac{28!}{7! \, 21!}$$
 [B] $_{28}C_{20} = \frac{28!}{7! \, 20!}$ [C] $_{28}C_{20} = \frac{28!}{8! \, 20!}$ [D] $_{28}C_{19} = \frac{28!}{8! \, 19!}$

87. A hat contains 27 names, 13 of which are male. If five names are randomly drawn from the hat, what is the probability that at least two male names are drawn?

[A] 0.140 [B] 0.186 [C	C] 0.860	[D] 0.814
------------------------	----------	-----------